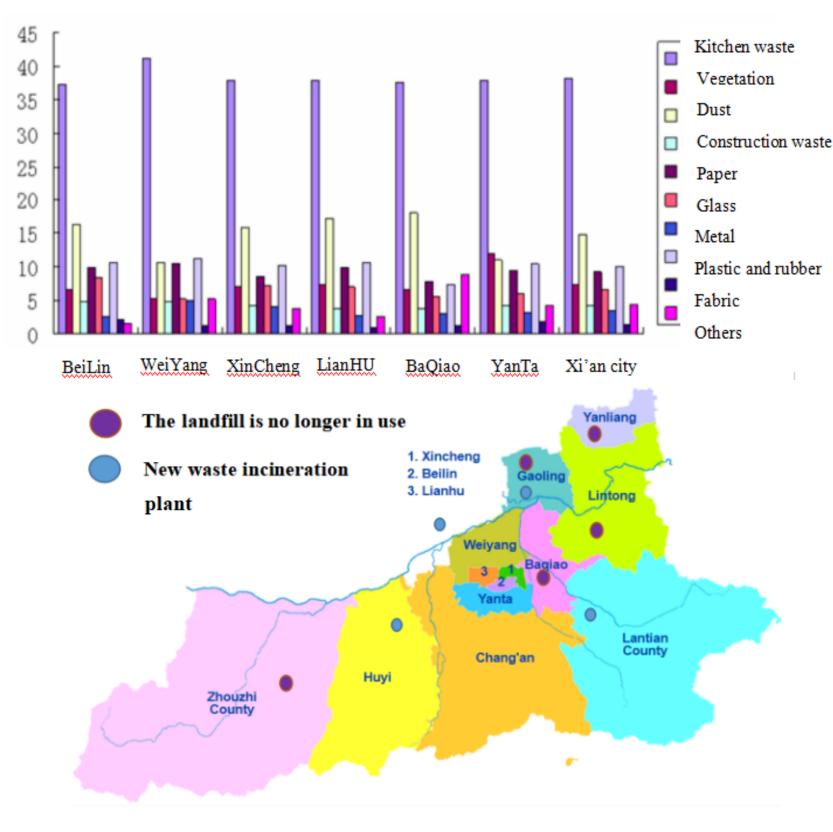


FACULTY OF AGRICULTURAL AND ENVIRONMENTAL SCIENCES, GÖDÖLLŐ

Life Cycle Assessment as a decision tool for food waste Management----A Xi'an Case Study


Presentor/Előadó: Liang Zhiwei

Supervisors/Témavezető: Mérőné Dr.Nótás Erika

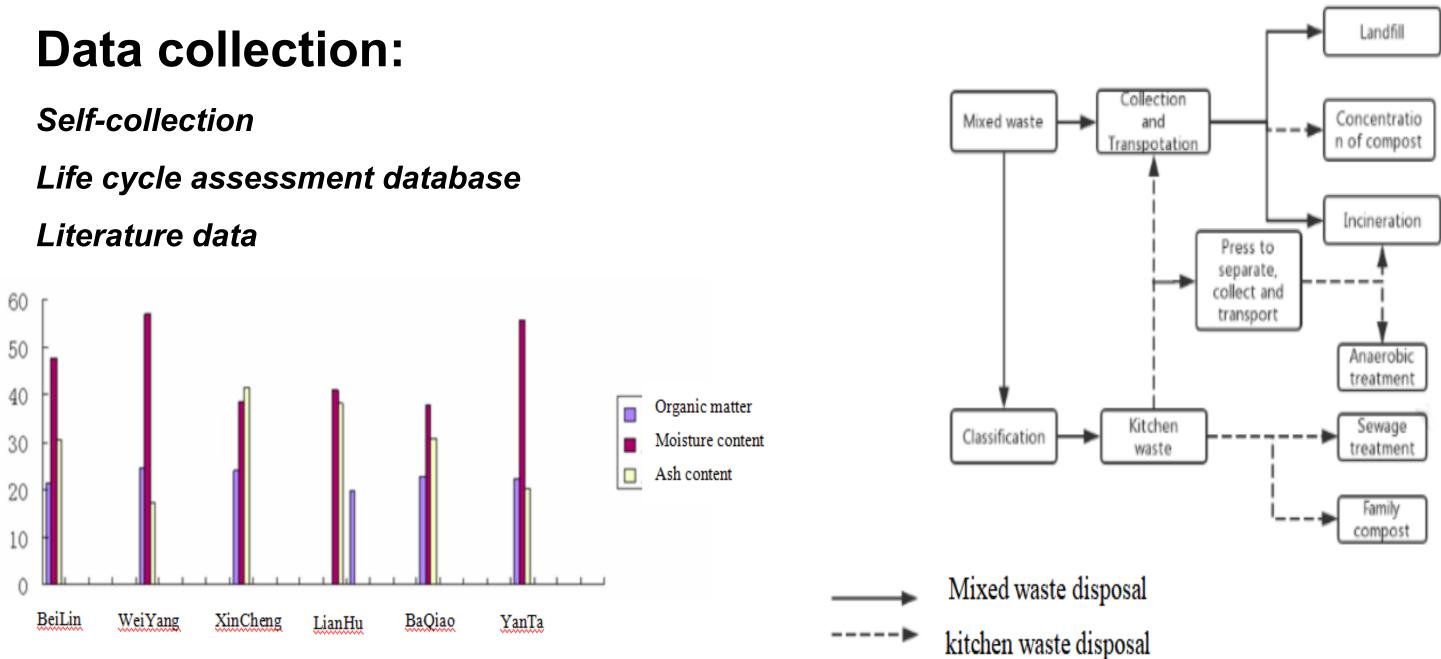
Date/Dátum: 2020/11/30

Problem and purpose

- The domestic waste in Xi'an has been treated as mixed landfill, which has caused serious leachate pollution and affected the surrounding land and people's lives.
- As the landfill is filled, Xi'an urgently needs a A sustainable way to dispose of domestic waste. • I compared the six ways of treating kitchen
- waste with LCA.
- I calculated the environmental impact potential value and energy consumption of each scenario. relevant departments of the city.
- It can provide a basis for decision-making of

LCA of kitchen waste

Transformation: Fermentation(Aerobic&Anaerobic),& Composting, Incineration, Shredding etc.



Use: Biogas, Organic fertilizer ,Electric energy, Livestock feed etc.

End of life: Landfill, Ash from incineration Organic fertilizer etc.

Extraction: Separate collection or mixed collection

Material and Methods

The chemical composition of living garbage composition in Xi'an (%)

Scenarios and scoping

Scenario 1: Collect transport mixed + sanitary landfill

Scenario 2: Collect transport + mixed incineration

Scenario 3 : Classification collection and transportation + kitchen waste press dehydration + anaerobic digestion and incineration treatment

Scenario 4: Classified collection with transportation + centralized composting

Scenario 5: Classified collection + composting at home

Scenario 6: Classification collection + kitchen waste disposal with breaking machine + sewage treatment + sludge disposal

Functional unit

I selected **500** waste classification pilots in xi 'an city as the research objects. There are average **3,000 people** in each pilot project and the per capita waste output is 1.5kg/d, so the total waste output is **2250t/d**. The content of kitchen waste in household waste is **40%** according to the survey of household waste data of xi 'an city, that is, the per capita output of kitchen waste is 0.6kg/d.

ISO14040 ISO14044

		Scenario1		Scenario2		
		Life cycle stage of landfill		Life cycle stage of incineration		
		Transportation Landfill Tra		Transportation	Incineration	
Material	Input					
	Output					
Energy	Input	Fuel	Electricity	Fuel		
	Output				Electricity, thermal energy	
Pollutant discharge		Automobile exhaust, leachate	Exhaust gas, leachate	Automobile exhaust,	Exhaust gas	

		Scenario3					
		Life cycle stage o	Life cycle stage of Press anaerobic digestion integrated treatment				
		Transportation	Squeeze	Incineration	Anaerobic digestion		
Material	Input						
	Output						
Energy	Input	Fuel	Electricity				
	Output			Electricity, thermal energy	Electricity, thermal energy		
Pollutant discharge		Automobile exhaust,	Leachate	Exhaust gas	Exhaust gas, waste residue, waste water		

		Scenario4		Scenario5	
		Life cycle stage of Centralized composting		Life cycle stage of compost at home	
		Transportation Compost (Compost at home	Transportation
Material	Input		Ingredients		
	Output	Composting product		Composting product	
Energy	Input	Fuel			
	Output				
Pollutant discharge		Automobile exhaust	Exhaust gas, Leachate	Exhaust gas, Leachate	

			Scon	ario6
			JUEII	anou
		Life cycle stage o	of kitchen waste pr	ocessoi
		Crushing		Sewag
Material	Input	Water		Chemi
	Output			
Energy	Input	Electricity		
	Output			
Pollutant discharge				Waste

or

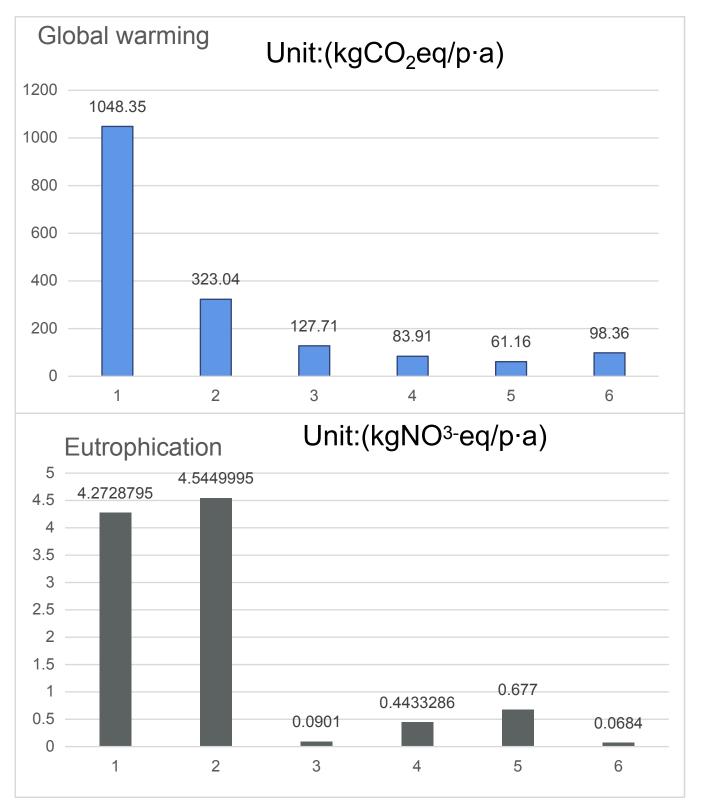
ige treatment

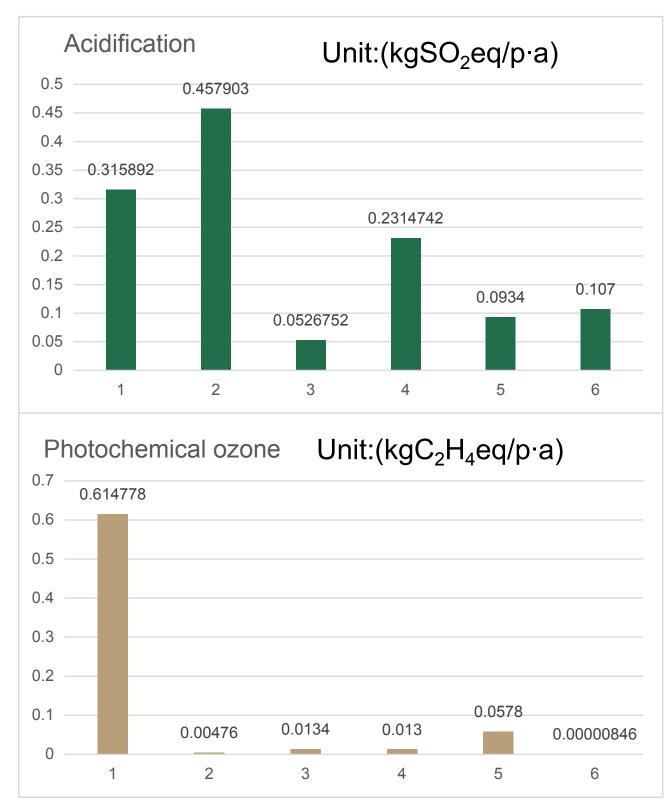
nicals, water, etc

gas, sludge

Results of energy consumption or release

Scenarios	Energy consumption or release	MJ/Functional unit		
1	377.01MJ/t waste	206.35		
2	-718.17MJ/t waste	-393.07		
3	-649.58MJ/t kitchen waste	-134,8		
4	478.48 MJ/t kitchen waste	104.92		
5	211MJ/t kitchen waste	46.21		
6	700MJ/t kitchen waste	153.30		

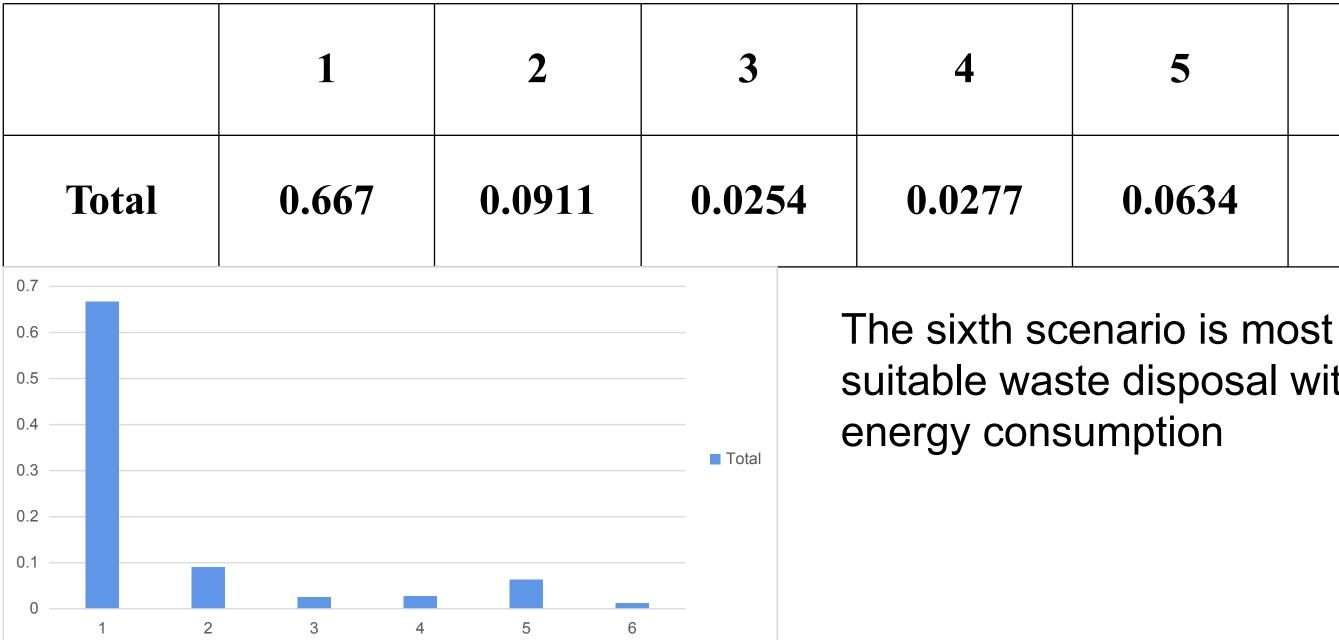

Evaluation: +1 or -1 point/ 100 MJ/ Functional unit	SCENARIOS	POIN
	1	+2
	2	-4
The released energy is	3	-2
used for production of	4	+1
eletricities	5	+1
	6	+2



Functional unit:(kg/p.a)

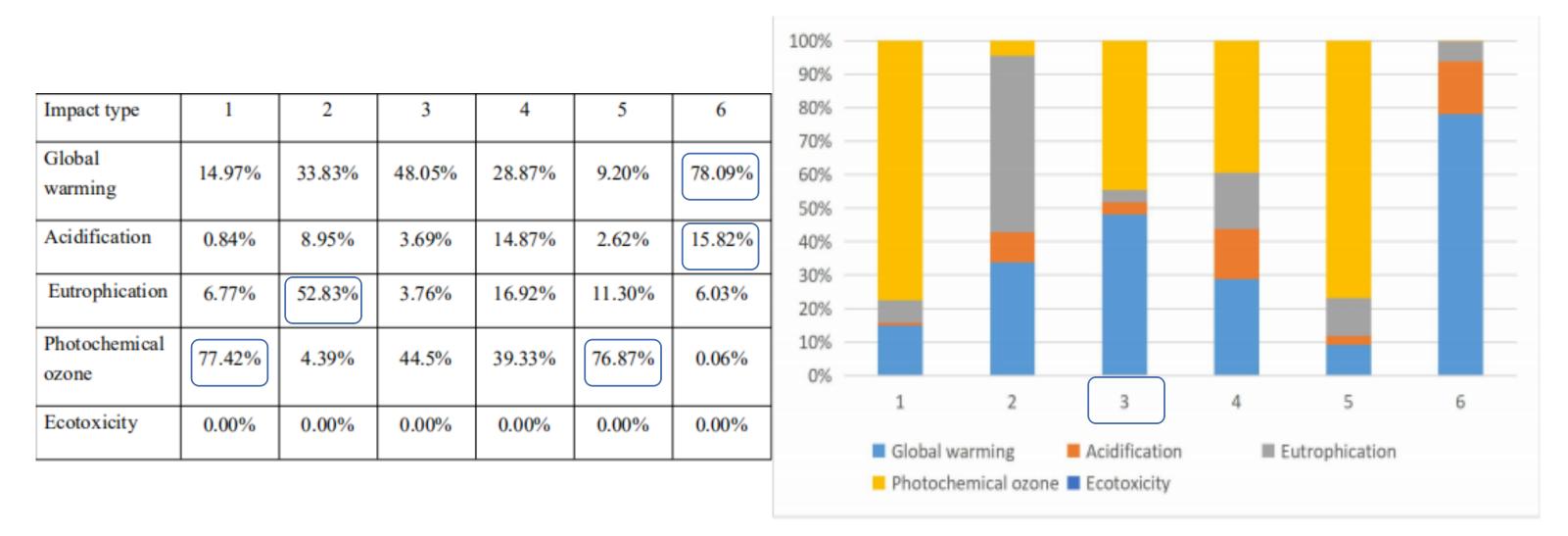
NT

Results without standardization and weighting



Results(without standardization and weighting) The environmental impact of the scenarios based on the ranking order

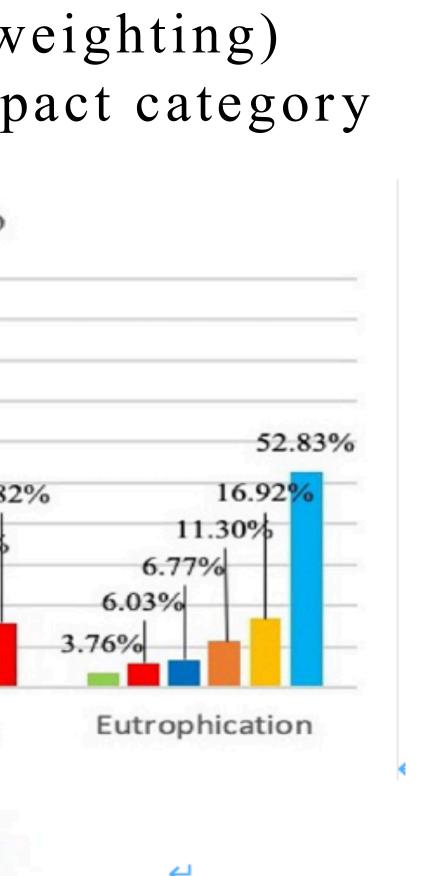
Scenario	1	2	3	4	5	6
GWP	6	5	4	2	1	3
AP	5	6	1	4	2	3
EP	5	6	2	3	4	1
POCP	6	2	4	3	5	1
Point	22	19	11	12	12	8
Energy point	+2	-4	-2	+1	+1	+2
SUM POINT	24	15	9	13	13	10


Total environment impact potential of **scenarios**(with standardization and weighting) without energy consumption and release

5	6
0.0634	0.012

suitable waste disposal without

Results(with standardization and weighting) Environmental impact of each scenario


Mix waste problem: Mixed waste has a great negative effect in various treatment methods, and its physical and chemical properties are complex. For example, in the incineration process, the burning of plastics will produce toxic gases, and in the composting process, indegradable substances will hinder fermentation

Results(with standardization and weighting) The order of the scenarios in each impact category

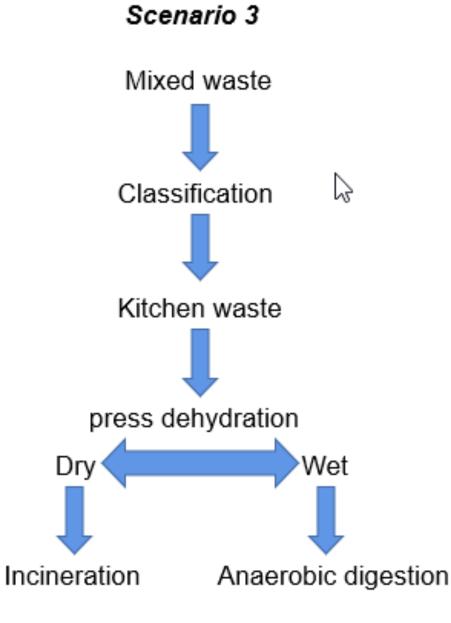
100.00% 77.42% 90.00% 78.09% 76.87% 80.00% 70.00% 60.00% 44.50% 48.05 50.00% 15.82% 39.33% 33.83% 40.00% 28.87% 14.87% 30.00% 8.95% 14.97% 20.00% 3.69% 2.62% 9.20% 4.39% 10.00% 0.84% 0.06% 0.00% Photochemical Global warming Acidification ozone

Environmental impact of each scenario

Results(with standardization and weighting) The environmental impact of the scenarios based on the ranking order

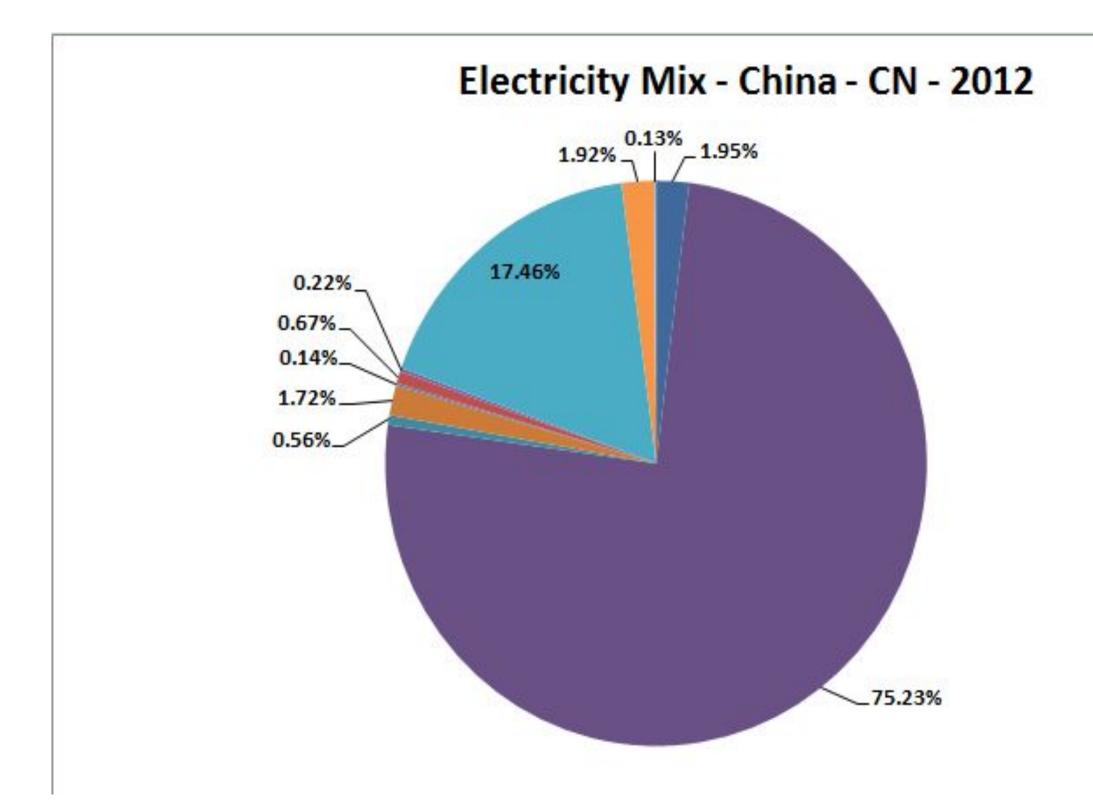
Scenario	1	2	3	4	5	6
GWP	2	4	5	3	1	6
AP	1	4	3	5	2	6
EP	3	6	1	5	4	2
POCP	6	2	4	3	5	1
Point	12	16	13	16	12	15
Energy point	+2	-4	-2	+1	+1	+2
SUM POINT	14	12	11	17	13	17

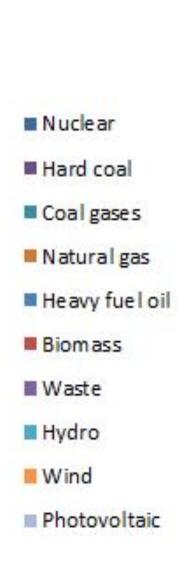
• Data standardization


Data standardization has two purposes:

1. Provide comparable criteria by comparing the relative size of the contribution to the various types of impact.

2. Based on the annual total potential environment influence in the whole society should be taken as the basis of standardization.


Conclusion and recommendation


- The third scenario is the most suitable waste disposal method with and without standardization+ weighting in Xi'an.
- However, due to economic , household disposal is not ideal.
- Due to the lack of awareness of waste classification, mixed incineration of waste is the current disposal mode.
- We can only expect on the manual discard of plastic and the sorting of hazard waste.
- The best way to reduce environmental impact is to sort from the raw material resource.
- In situation of not weighting and standardization.
 Scenario third get the lowest score.

Thanks for your attention! Köszönöm a figyelmet!

Impact assessment model

- The potential value of environmental impact Yang J. X. et al. (2001) $EP(j) = \sum EP(j)_i = \sum [Q_i \times PF(j)_i]$
- Q_i ---- The yield of the *i* type of pollutant

$PF(j)_i$ The equivalent factor for the potential environmental impact of the i	$NR(j)_{10} = \frac{LI(j)_{2010}}{POP_{2010}}$
type pollutant on the j type pollutant.	
EP(j)System contribution to the j potential environmental impact.	The formula:
	NR(j)102010 glo
$EP(j)_i$ The <i>i</i> emission contributes to the third potential environmental impact.	EP(j)2010Global
 Data standardization 	Giobal
	DOD

Data standardization has two purposes:

1. Provide comparable criteria by comparing the relative size of the contribution to the various types of impact.

2. Based on the annual total potential environment influence in the whole society should be taken as the basis of standardization.

global (or regional) per capita environmental impact potential.

bal (or regional) total environmental impact potential for 2010.

POP₂₀₁₀ ----2010 global (or regional) population.

 $NEP(j) = \frac{EP(j)}{NR(j)_{2010}}$

Impact assessment model

• Weighted assessment Yang J. X. et al. (2001)

$$WP(j) = WF(j) \cdot NEP(j) = WF(j) \cdot \frac{1}{T \cdot R(j)} \cdot P(j)$$

WF(j) ----The weight factor of the j type of environmental impact NEP(j) ----The environmental impact potential after standardization. The weight factor can be determined by the following formula:

$$WF(j) = \frac{EP(j)_{2010}}{ER(j)_{T2020}}$$

EP(j)2010 ----Sum of global (or regional) environmental impact potentials in 2010 ER(j)T 2020 ----Sum of global (or regional) environmental impact potential values in 2020. The weighted environmental impact potential value is:

$$EIL = WF(j) \times \frac{EP(j)_{product}}{NR(j)_{2010}}$$