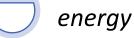
The environmental impact of concrete

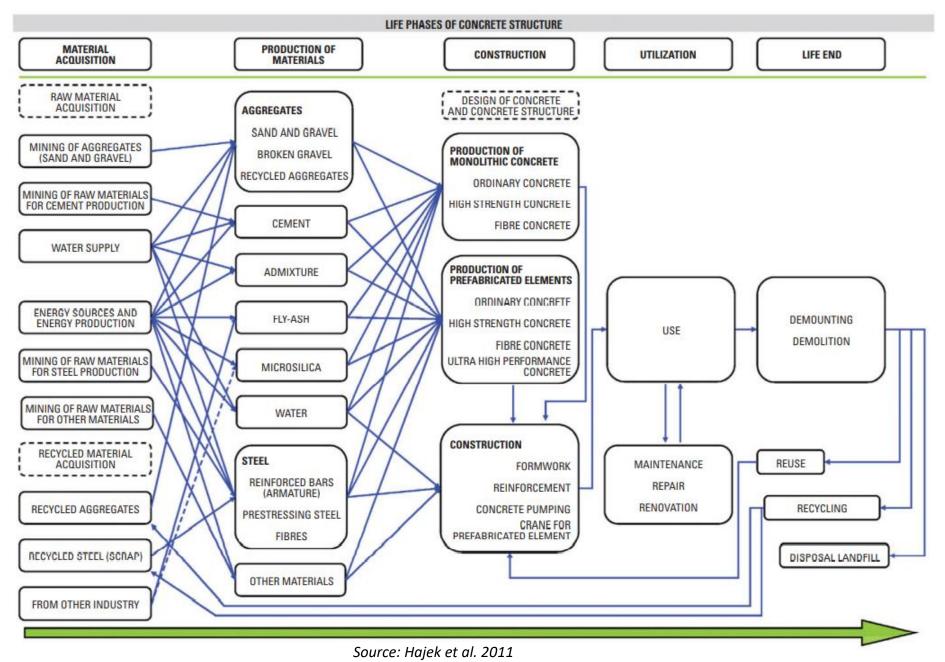
Amina Dacic BME- PhD student

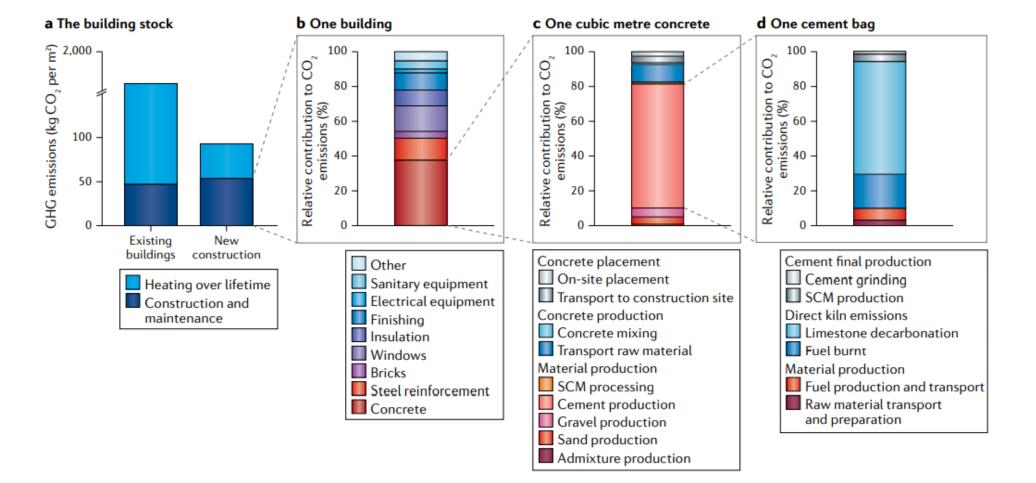
Introduction


The environmental impact of cement and concretelow per unit volume of material → amount used impact of the sector highly significant Cement ~4 gigatonnes (Gt) per year Concrete ~ 900 Gt added since the beginning of the industrial revolution

Selected source	Embodied energy: MJ/kg		
	Steel	Timber	Concrete
Alcorn et al.27,28	35-9	0-3-24-2	0-81-2
Eaton and Amato ²⁹	31	13-36	0-84-1-36
Franklin Associates ³⁰	44-6	14-9	_
West et al. 31	32	5-7-10	_
Berge ³²	25	3-16	1
All database sources	6-81-8	0-3-61-3	0.07-23.9

Sustainable development in the construction industry

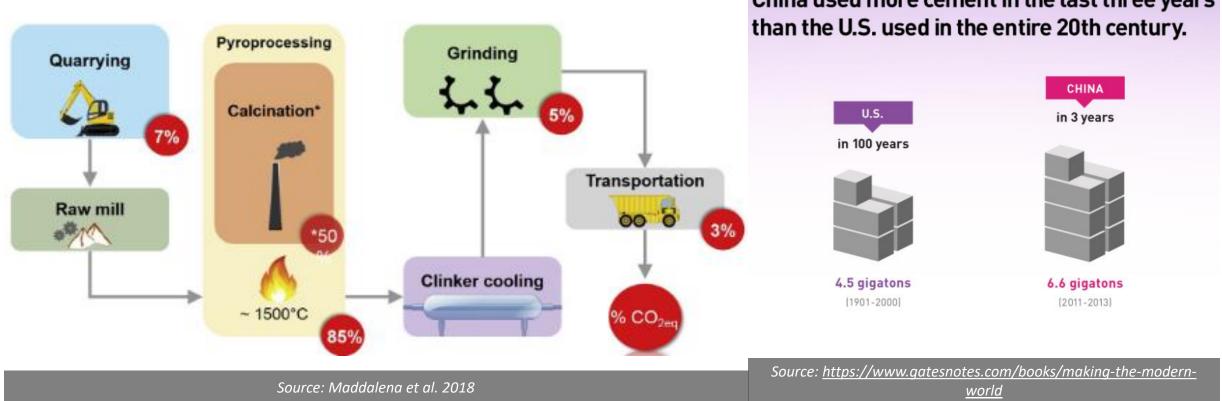

raw materials



*construction and demolition waste

XVI. LCA konferenciá

Source: Habert et al. 2020

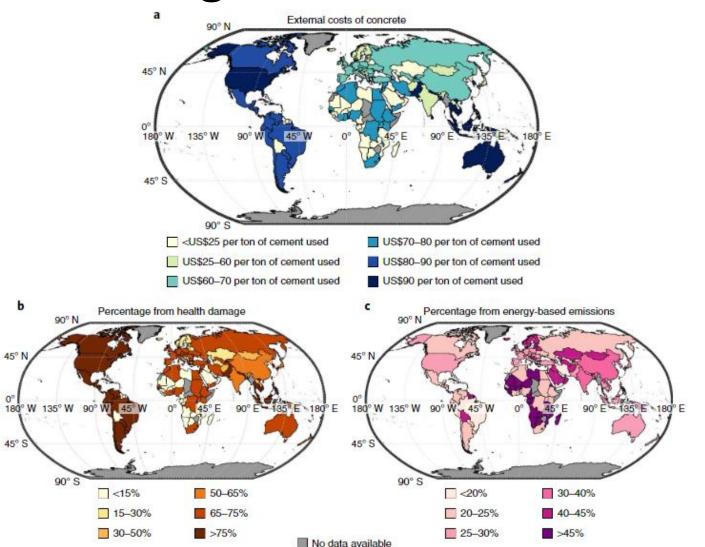

a- average values from 230 buildings in Europe (75%) and Asia (25%)

b- average of 35 buildings from France and Switzerland built between 2010 and 2015

c- average of the main concrete type made with 25% supplementary cementitious

materials (SCMs) in Australia and Switzerland

d- averages of French values



China used more cement in the last three years

Health damage

Concrete production → approximately US\$335 billion annually of external climate and health damages (nearly 75% of the industry's value reported in 2015 = US\$450 billion)

- a- cumulative costs- all considered economic damages for the production of concrete and mortar, as a ratio to a metric ton of cement produced for each country in 2012
- b- percentage contribution to cumulative economic damages from health damages, reflecting air pollutant emissions calculated from PM2.5, PM10, SOX and NOX emissions
- c- percentage contribution to cumulative economic damages from energy-based emissions

Production of concrete and mortar by country- Source: Miller & Moore, 2020 XVI. LCA konferenciá 6

Stages of concrete production

- cement production → approximately 50% of the total climate and health damages of concrete: ~32% in climate and ~18% in health damages
- chemical reactions to produce clinker for cement= 45–60% of the total GHG emissions from concrete production (depending on region)
- next-greatest contributor -aggregates → 4% in climate damages and 34% in health damages of concrete.
- next-largest contributor to the cumulative health damages -concrete batching, the mixing of concrete constituents (high associated PM emissions)
- batching- negligible amount to climate but ~11% in health damages
- mineral and chemical admixtures- small relative to these other components of concrete production despite their typically longer transportation distances to the batching sites

Mid term solutions

The efficiency of clinker production

The efficiency of cement production

Optimizing the efficiency of concrete

Improving construction efficiency

Design efficiency

Reduction of GHG emissions

Long term solutions

Use of alternative cements

Carbonation of cement and concrete

Increasing CO₂ uptake at end of life

Carbon capture and storage

Conclusions

- Sustainable solution on all the stages of value chain:
 - clinker production
 - cement production
 - cement use
 - concrete use
 - design of structures
 - use of structures
 - end-of-life.
- Investment in innovation
- Inclusion of environmental performance in standards

References

- 1. Habert et al. Nature Reviews Earth & Environment. 2020, 1, 559-573.
- 2. Hammond & Jones. *Proceedings of the Institution of Civil Engineers-Energy.* **2008,** *161,* 87-98.
- 3. Visintin et al. Journal of Cleaner Production. 2020, 248, 119243.
- 4. <u>https://ec.europa.eu/eurostat/statistics-</u> <u>explained/index.php?title=Waste_statistics</u>
- 5. Hajek et al. *Structural Concrete.* **2011**, *12*, 13-22.
- 6. Maddalena et al. Journal of Cleaner Production. 2018, 186, 933-942.
- 7. <u>https://www.gatesnotes.com/books/making-the-modern-world</u>
- 8. Miller & Moore. *Nature Climate Change.* **2020,** *10,* 439–443.

Thank you for your attention!

Contact: dacic.amina@emk.bme.hu

XVI. LCA konferenciá