

Comparative Life Cycle Assessment of electroceramic material manufacturing methods

PROF. EVA PONGRÁCZ UNIVERSITY OF OULU, FINLAND

Electroceramics are key materials in all electronics

\$2-trillion global electronics industry would not exist without electroceramics

The share of electroceramic materials of this market is over 11 billion euros

Global Electronic Ceramics Market Market forecast to grow at CAGR of 5.1% USD 16.6 billion USD 11.3 billion 2019 2027

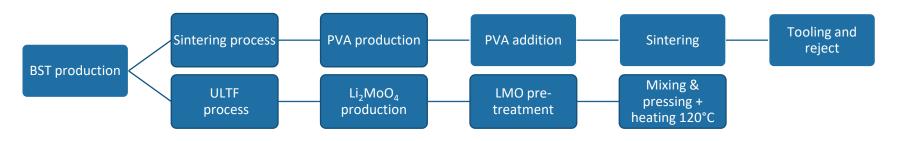
https://www.researchandmarkets.com/reports/5237544

THE WORLD'S LARGEST MARKET RESEARCH STORI

Electroceramics manufacturing

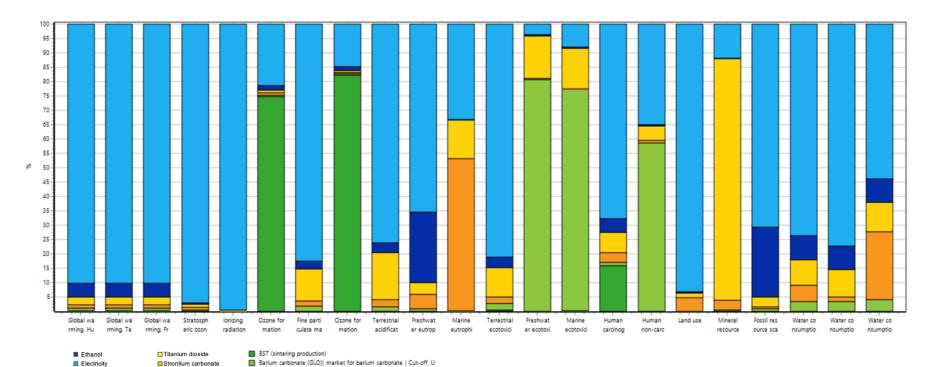
- The traditional sintering method requires temperatures of ~1300 °C
 - Significant energy consumption and carbon emissions
- Several lower temperature ("cold-sintering") methods have been developed
 - However, they also require temperatures of a couple of hundreds degrees
- An alternative, ultra-low temperature fabrication (ULTF) method of ceramics has been developed at the University of Oulu (4 patents to date)
 - Operates at room temperature
- The objective of this work was to illustrate with the use of LCA that the alternative manufacturing method is environmentally preferable to the traditional method
 - Modelling is based on assumptions, using materials, processes, machinery, etc. typically used in industry, as well as based on laboratory scale measurements
 - Part of a Business Finland 'Research to Business' project InnoPro

Comparison of methods


	Material preparation	Forming component	Sintering	Post treatment
TRADITIONAL METHOD	Ceramic powder mix	High pressure moulding	High temperature sintering 1000-1450 °C	Cutting, size tuning
COLD SINTERING PROCESS	Ceramic powder mix Solvent -nanoscale particles	Medium pressure moulding with heating (300-500°C)	Medium temperature sintering during moulding (300-500°C)	Post treatment/ sintering with post heating 120-200°C (preferred 700-900°C)
ULTRA LOW TEMP FABICATION (ULTF)	Ceramic, multi- modal powder mix Distribution in size (>50um) LiMbX + Solvent Saturat ed Solvent Saturat ed Solvent Saturat ed	Medium pressure moulding	No sintering needed	Drying at room temperature (or accelerated <120 °C)

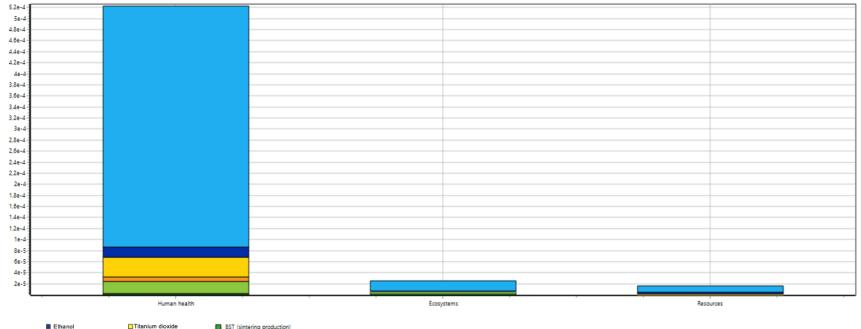
LCA of the two process methods

- The raw material in both processes is $Ba_{0.55}Sr_{0.45}TiO_3$ (BST)
 - In the traditional production, Polyvinyl alcohol (PVA) is used as organic additional material
 - In the ULTF process, water-soluble Li2MoO4 (LMO) is added to BST
 - Dried at room temperature for two days, or
 - At 120 °C for two hours
- The processes were built in SimaPro as presented in diagram below



Assumptions made

- Raw material: 100g BST for both processes
 - There is shrinkage in the traditional process, requiring tooling, assumed 5%
- All combustions are complete, emissions are mainly CO₂
 - PVA combustion: all intermediate products are expected to react to CO₂
- The quantities of materials and energy consumptions are all calculated and/or estimated
 - Energy consumption of ovens measure in laboratory conditions
- Components that had to be created in SimaPro (based on scientific articles):
 - Li_2MoO_4 are produced by (LiOH + H_2O) + MoO_3
 - Reactions happen in room temperature during 1 h, no energy consumption
 - PVA is prepared by polymerization of vinyl acetate
 - PVA is an auxiliary in the sintering step, mixed into BST and then burnt off in the sintering furnace

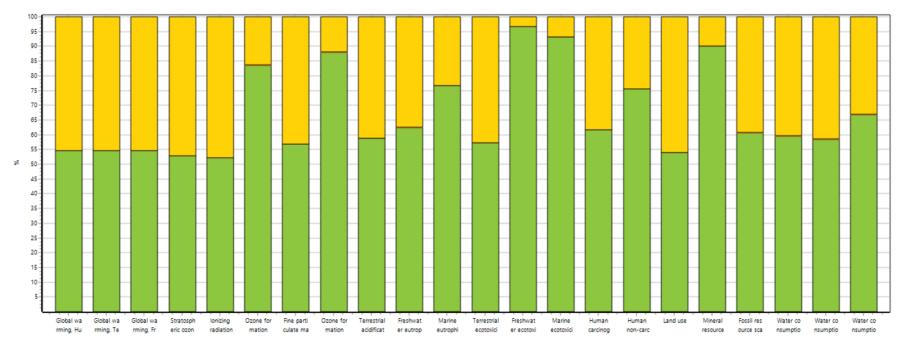

BST – characterization

Method: ReCiPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Characterization / Excluding infrastructure processes / Excluding long-term emissions Analyzing 105 g '851 (sintering production);

BST – normalization

Ethanol Electricity Titanium dioxide
Strontium carbonate
Strontium carbonate
Cut-off, U

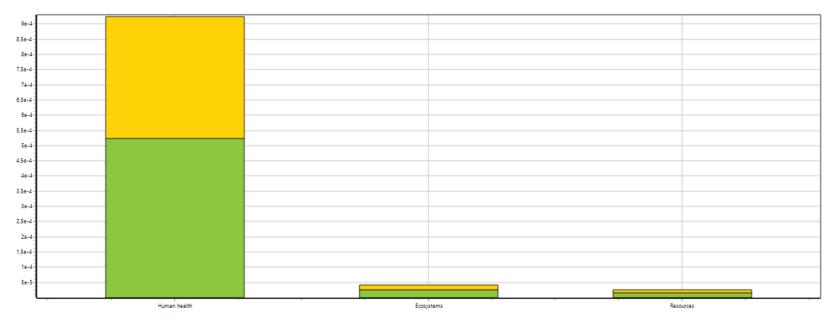
Method: ReCiPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Normalization / Excluding infrastructure processes / Excluding long-term emissions Analyzing 105 g 'BST (sintering production)';


Se	Damage category /	Unit	Total	BST (sintering production)	Barium carbonate	Strontium carbonate	Titanium dioxide {RER}	Ethanol, without water, in 99.7%	Electricity, low voltage {FI}
7	Human health		0,000523	2,46E-6	2,21E-5	8,04E-6	3,48E-5	1,88E-5	0,000436
7	Ecosystems		2,49E-5	4,65E-6	2,16E-7	4,08E-7	9,71E-7	8,64E-7	1,78E-5
2	Resources		1,56E-5	x	1,24E-7	1,42E-7	8,27E-7	3,72E-6	1,08E-5

A MAGYAR

TUDOMÁNY ÜNNEPE

Sintering (traditional process), characterization



Ceramic sintering BST (sintering production) Polyvinyl alcohol Electricity, low voltage (FI) electricity voltage transformation from medium to low voltage | Cut-off, U

Method: ReCIPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Characterization / Excluding infrastructure processes / Excluding long-term emissions Analyzing 105 g 'Ceramic sintering';

Sintering (traditional process), normalization

Ceramic sintering BST (sintering production) Polyvinyl alcohol Electricity, low voltage (Fi)| electricity voltage transformation from medium to low voltage | Cut-off, U

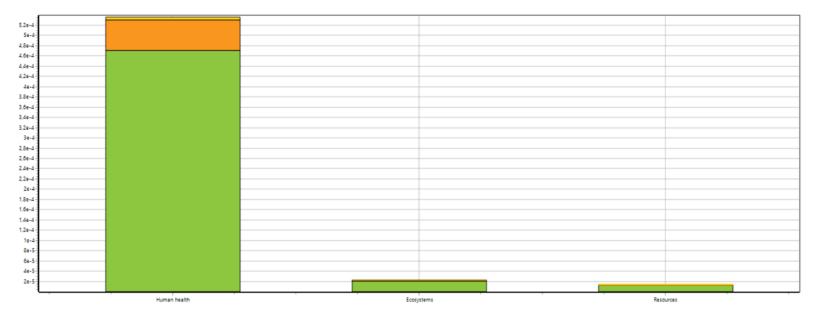
Method: ReCIPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Normalization / Excluding infrastructure processes / Excluding long-term emissions Analyzing 105 g 'Ceramic sintering';


Se	Damage category 🖉	Unit	Total	Ceramic sintering	BST (sintering production)	Polyvinyl alcohol	Electricity, low voltage {Fl}
	Human health	%	100	0,00643	56,6	0,065	43,4
P	Ecosystems	%	100	0,00705	60,3	0,0531	39,6
	Resources	%	100	x	61,1	0,199	38,7

A MAGYAR

TUDOMÁNY

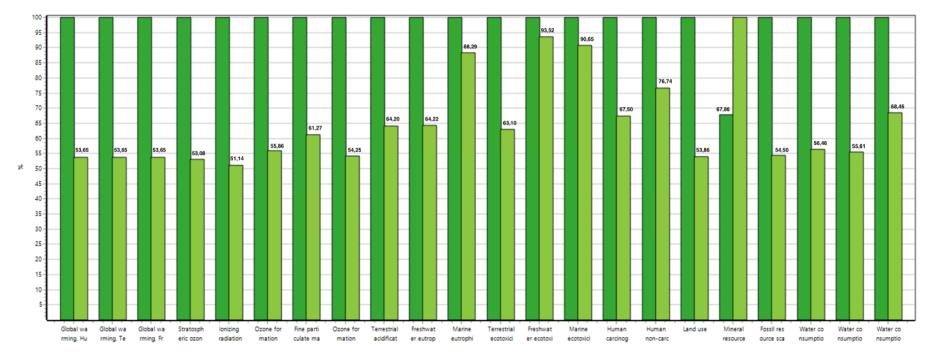
Drying – ULTF, characterization



📕 Ceramic (ULTF) 📋 BST (ULTF production) 🗧 LMO (pre-treatment) 📒 Electricity, low voltage {Fi} electricity voltage transformation from medium to low voltage | Cut-off, U

Method: ReCIPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Characterization / Excluding infrastructure processes / Excluding long-term emissions Analyzing 100 g 'Ceramic (ULTF);

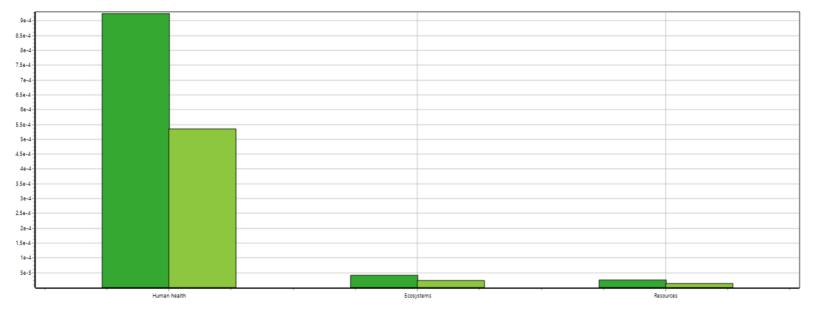
Drying – ULTF, normalization


🗧 Ceramic (ULTF) 🚦 BST (ULTF production) 📒 LMO (pre-treatment) 📋 Electricity, low voltage (Fi)| electricity voltage transformation from medium to low voltage | Cut-off, U

Method: ReCIPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Normalization / Excluding infrastructure processes / Excluding long-term emissions Analyzing 100 g 'Ceramic (ULTF);

☑ Human health 0,000536 x 0,000471	5,9E-5	5,84E-6
✓ Ecosystems 2,28E-5 x 2,04E-5	2,1E-6	2,38E-7
	1,52E-6	1,44E-7

Comparison: Traditional process vs ULTF4

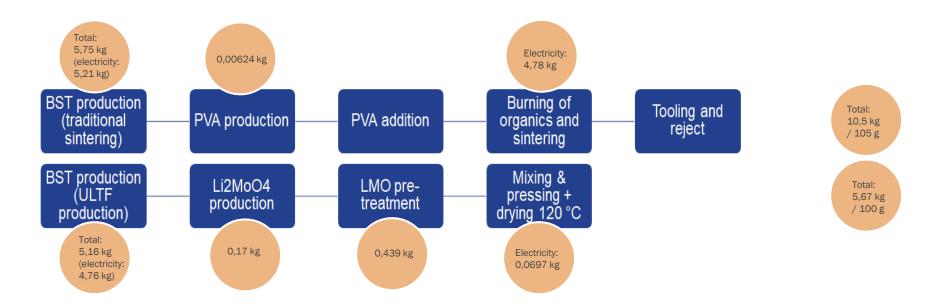


Ceramic sintering 🔲 Ceramic (ULTF)

Method: ReCiPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Characterization / Excluding infrastructure processes / Excluding long-term emissions Comparing 105 g 'Ceramic sintering' with 100 g 'Ceramic (ULTF);

Comparison: Traditional process vs ULTF

Ceramic sintering Ceramic (ULTF)

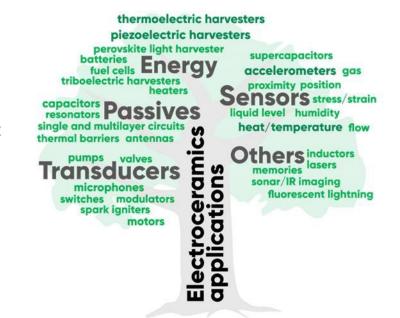

Method: ReCiPe 2016 Endpoint (H) V1.06 / World (2010) H/A / Normalization / Excluding infrastructure processes / Excluding long-term emissions Comparing 105 g 'Ceramic sintering' with 100 g 'Ceramic (ULTF)';

Se	Damage category	Unit	/ Ceramic sintering	Ceramic (ULTF)
2	Human health		0,000924	0,000536
2	Ecosystems		4,12E-5	2,28E-5
5	Resources		2,55E-5	1,43E-5

MTA

Carbon footprint comparison by process stages

- CO2-eq for 100g ready BST ceramic product, using Finland data: 1kWh=0,248 kg CO2eq
- Note: Calculations are made in laboratory scale; results are not absolute!


Discussion

- The novelty of the research is that we conducted LCA of non-commercial materials, which are still in development process
 - Some materials had to "synthesized" in SimaPro
- The limitation is that e.g. electricity consumption data is based on laboratory-scale measurements
 - We expect that, while the results are not absolute, relatively they are illustrative
- While doing LCA on research-based materials is challenging, the benefit was that our research could inform the material development process
 - For example advising on the environmental impacts of intermediates such as ethanol

Conclusions

- Reducing energy consumption saves the environment and money to the companies
 - ULTF method reduces carbon footprint over 40%
- ULTF has great potential on piezoelectric, dielectric and ferroelectric ceramics (~70% of markets)
 - The method has potential to obtain 10% share
 \$4,5 billion in the 1-3 years
- The LCA study helped in material development, as well as providing quantitative evidence on the environmental superiority of the process

Acknowledgements

Funding for this research was provided by Business Finland, through the InnoPro project, decision number 6729/31/2021

The presentation is based on the results of WP1 'Product Carbon Footprint and Life Cycle Assessment', and the work of researchers Anna M. Kemppainen and Jenni Ylä-Mella

Kind acknowledgements to InnoPro project partners Mikko Nelo, Heli Jantunen, Seppo Nissilä, Tuomo Siponkoski and Jari Juuti.

KÖSZÖNÖM A FIGYELMET!

mta.hu

