

EXAMINATION OF THE LIFE CYCLE OF PACKAGING MATERIALS FOR BERRIES

LIINA LAUMETS *MSC STUDENT, ESTONIAN UNIVERSITY OF LIFE SCIENCES* DR. ULVI MOOR *ASSOCIATE PROFESSOR, ESTONIAN UNIVERSITY OF LIFE SCIENCES* PROF. DR. KLÁRA TÓTHNÉ SZITA *PRESIDENT, LCA CENTER ASSOCIATION* DR. VIKTORIA MANNHEIM *VICE PRESIDENT, LCA CENTER ASSOCIATION*

Introduction

- EU is focusing on limiting the use of Single-Use Plastics (SUP).
- Fresh berries are mostly packed into SUP punnets. What could be sustainable alternatives?

https://thelatch.com.au/berry-packets-reuse/

MTA

https://www.euronews.com/green/2022/12/15/amazons-annual-plasticpackaging-waste-could-circle-the-world-800-times-report-alleges

The strawberry industry in the Netherlands is using cardboard punnets.

Other countries are following suit... (Photo: Ulvi Moor)

mulgimari.ee

 How do different packaging materials affect the quality and safety of fruits?

- What is the environmental impact of various packaging materials?

Research goals:

- Assessing the environmental impact of four different packaging options.

- Determining the effect of different packaging on the quality of blueberry fruit.

Photo: A. Koort

MTA

http://www.sofrupak.com/

Note: The cardboard and cellulose film can be recycled together and are 100% biodegradable after 24 weeks

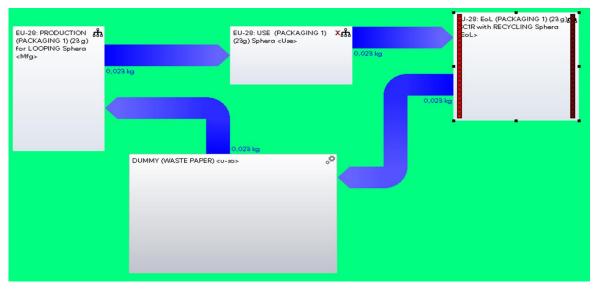
ecological packaging

The tested materials

Blueberries (*Vaccinium* x *atlanticum* 'Northblue') stored 7 days at 4±2°C followed by 24 hours shelf life at +22°C.

Packaging name	Weight without lid [g]	Weight with lid [g]	The number of aeration holes
CB - cardboard packaging (SoFruPak)		23.61	18
CBC –cardboard packaging with a cellulose lid (SoFruPak)	22.36		10
PP – polypropylene packaging, control	6.26	11.71	22
RPLA - rice straw punnet with PLA lid (Bio4Pack)	11.46	18.37	10

Photos: A. Koort

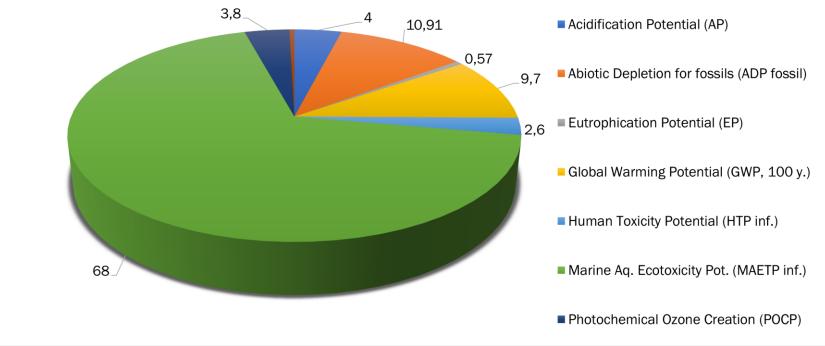

LCA methodology

Sphera/GaBi 8.0 LCA software
Functional unit (FU): 1000 kg.
Application of the looping method in the case of the Recycling scenario.
Cradle-to-grave LCA.

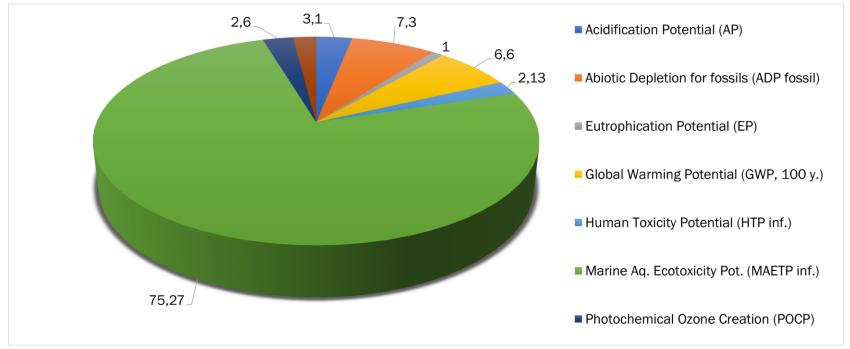
Transports:

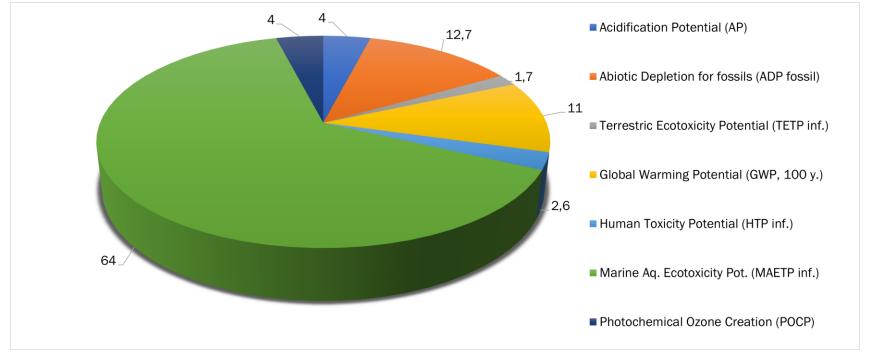
- Transportation of raw materials to the production stage (by truck, Euro 6, with a gross weight of 26-28 tons).
- Transport between the production stage and the use stage (truck trailer, Euro 6).

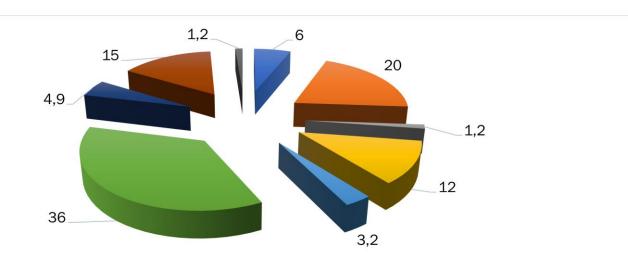
- Transport between the Use and Endof-Life stages using a truck trailer with Euro 6 emissions standards.


Examined scenarios:

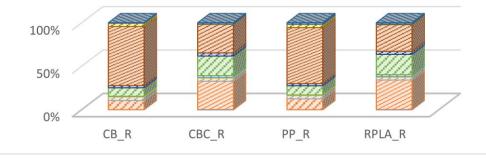
- 1. Recycling
- 2. Composting
- 3. Disposal/Landfilling
- 4. Conventional incineration


Results of <u>recycling</u> for the CB packaging, %


Results of <u>recycling</u> for the CBC packaging, %


Results of <u>recycling</u> for the PP packaging, % TETP!!

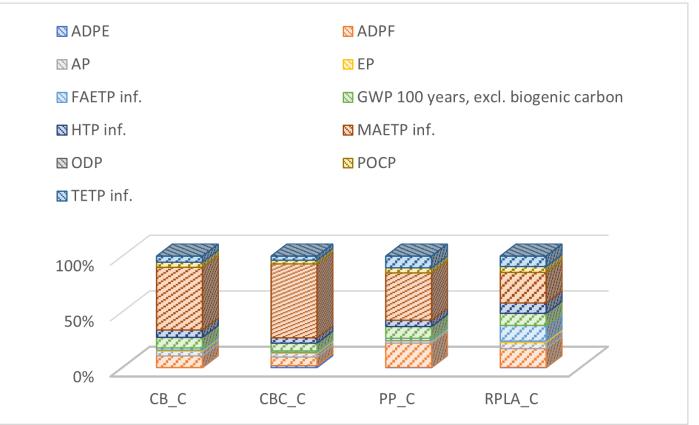
Results of <u>recycling</u> for the RPLA packaging, kg TETP + FAETP!!



- Acidification Potential (AP)
 Terrestric Ecotoxicity Potential (TETP inf.)
 Human Toxicity Potential (HTP inf.)
 Photochemical Ozone Creation (POCP)
 Eutrophication Potential (EP)
- Abiotic Depletion for fossils (ADP fossil)
- Global Warming Potential (GWP, 100 y.)
- Marine Aq. Ecotoxicity Pot. (MAETP inf.)
- Freshwater Aquatic Ecotoxicity Pot. (FAETP inf.)

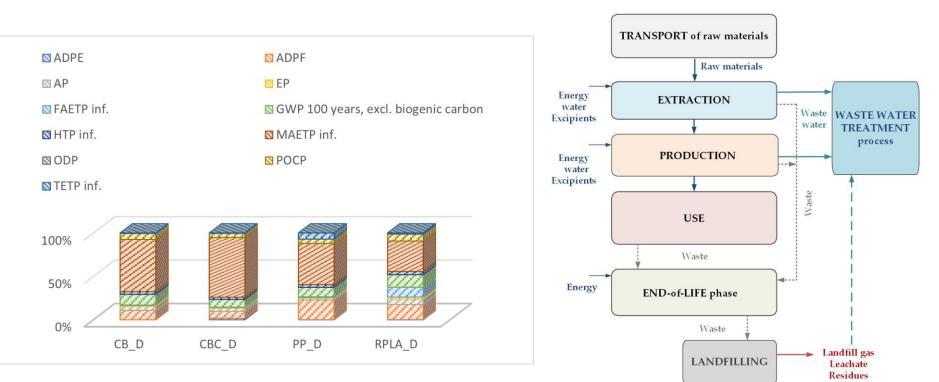
Results of <u>recycling</u> for the four types of packaging, kg

⊠ ADPE	MADPF
⊠ AP	⊠ EP
◙ FAETP inf.	🛚 GWP 100 years, excl. biogenic carbon
⊠ HTP inf.	MAETP inf.
⊠ ODP	⊠ POCP
🛛 TETP inf.	



Normalization method: CML 2001 - Jan. 2016, EU25+3, year 2000, excl. biogenic carbon (region equivalents). Weighting method: Sphera LCIA Survey 2012, Europe, CML 2016, excl. biogenic carbon (region equivalents weighted).

(Photos: V. Mannheim)

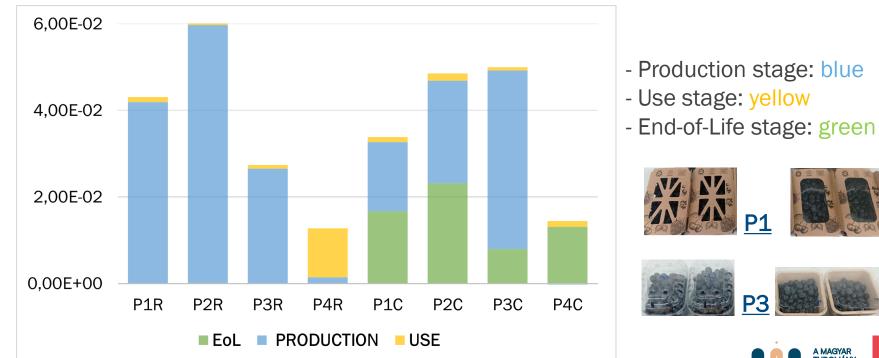


Results of **composting** for the four types of packaging, kg

Results of landfilling for the four types of packaging, kg

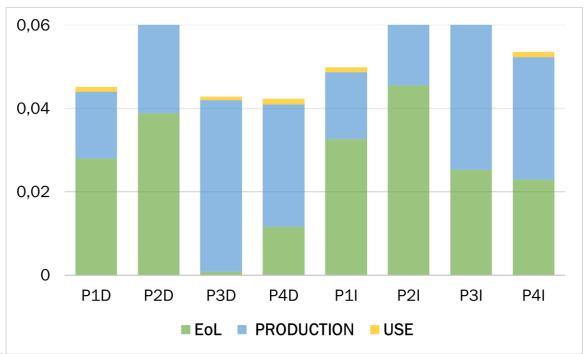
Results of *incineration* for the four types of packaging, kg

🛛 ADI	PE		🛛 ADPF		
🖾 AP			S EP		
🖾 FAE	TP inf.		🛚 GWP 100 years, excl. biogenic carbon		
🖾 HTF	P inf.		⊠ MAETP inf.		
🖾 OD	Р		N POCP		
🛛 TET	P inf.				
100% 50% 0%					
	CB_I	CBC_I	PP_I	RPLA_I	


M

LCA Results

Ρ4


MTA

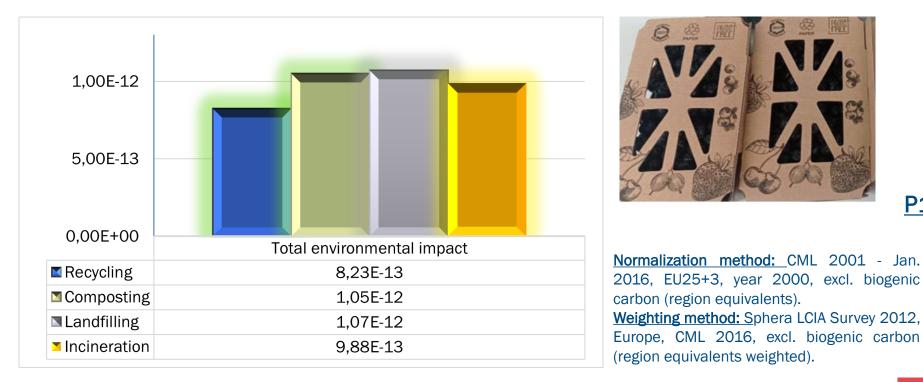
Comparison of <u>GWP values [kg CO₂ – eq.]</u> Comparison between <u>Recycling (R) and Composting (C)</u>

LCA Results

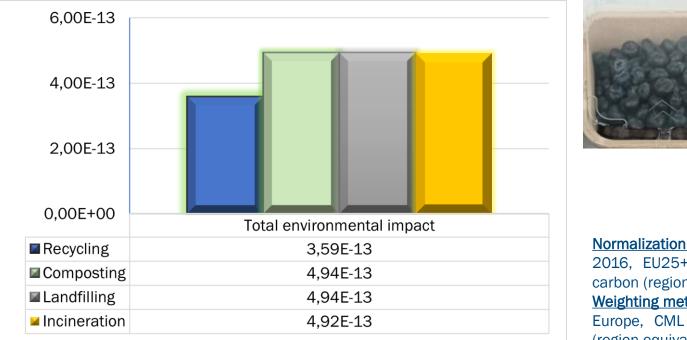
Comparison of <u>GWP values [kg CO₂ – eq.]</u> Comparison between <u>Landfilling (D) and Incineration (I)</u>

- Production stage: blue
- Use stage: yellow
- End-of-Life stage: green

- Blueberries stored in CB and CBC packaging had higher soluble solids than the control.
- Instrumentally measured colour intensity was higher in RPLA compared to other packages.
- The CB packaging has openings too wide for blueberries, making it unsafe for transportation and leading to higher weight loss due to transpiration.
- □ The cellulose lid of CBC packaging had some deformations after storage.



(Photos: U. Moor and A. Koort)


Conclusions Comparison of total environmental impacts [kg] Packaging type: CB (P1)

Ρ1

Comparison of total environmental impacts [kg] Conclusions Packaging type: RPLA (P4)

<u>P4</u>

MTA

Normalization method: CML 2001 - Jan. 2016, EU25+3, year 2000, excl. biogenic carbon (region equivalents). Weighting method: Sphera LCIA Survey 2012, Europe, CML 2016, excl. biogenic carbon (region equivalents weighted).

KÖSZÖNÖM A FIGYELMET!

mta.hu

